人工智能路径规划算法:迭代加深搜索

迭代加深搜索(Iterative Deepening Search, IDS)是一种结合了广度优先搜索(BFS)和深度优先搜索(DFS)的搜索策略,它通过重复执行深度限制的深度优先搜索来实现。每次迭代,深度限制增加,直到达到目标节点或搜索空间耗尽。下面是 V 哥的一些理解,分享给大家。

工作原理

  • 初始化:设置深度限制为0或1,从根节点开始搜索。
  • 深度限制的DFS:执行深度优先搜索,但只搜索到当前的深度限制。如果找到目标节点,则终止搜索。
  • 迭代:如果当前深度限制下没有找到目标,则增加深度限制,再次执行深度优先搜索。
  • 终止条件:当找到目标节点或搜索空间耗尽时,停止迭代。

特点

  • 时间复杂度:IDS的时间复杂度与最优策略(BFS或DFS)相当,但通常比单独的DFS或BFS更优。
  • 空间复杂度:与DFS相同,因为它在任何时候只存储一个路径在栈上。
  • 完备性:IDS是完备的,如果存在解,它最终会找到它。
  • 最优性:与BFS相比,IDS在找到目标节点时使用的节点和边更少,但可能需要更多的时间来处理这些节点。

示例

假设我们有一个简单的树状结构,我们想要找到深度为3的节点。使用IDS,我们会这样操作:

  • 设置深度限制为1,执行DFS,不找到目标。
  • 增加深度限制到2,再次执行DFS,仍然不找到目标。
  • 增加深度限制到3,执行DFS,找到目标节点。

应用

IDS常用于搜索算法中,特别是在解谜游戏(如八数码问题)、人工智能中的路径规划问题,以及任何需要在树或图中找到特定节点的场景。

注意事项

  • IDS在实际应用中可能需要根据问题的特性进行调整,以优化性能。
  • 在某些情况下,IDS可能不如专门的BFS或DFS有效,尤其是在搜索空间非常大或目标节点非常深的情况下。

迭代加深搜索是一种实用的搜索策略,它结合了BFS和DFS的优点,提供了一种平衡时间和空间复杂度的解决方案。

在Java中实现迭代加深搜索(Iterative Deepening Search, IDS),你可以使用递归方法来执行深度限制的深度优先搜索(Depth-Limited Search, DLS)。以下是一个简单的Java实现示例,它使用了一个简单的树结构来展示如何实现IDS。

类定义

首先,我们定义了一个简单的树节点类TreeNode,用于构建树结构:

class TreeNode {
    String data;    // 节点存储的数据
    TreeNode left;  // 指向左子节点的指针
    TreeNode right; // 指向右子节点的指针

    TreeNode(String data) {
        this.data = data;
        left = null;
        right = null;
    }
}

迭代加深搜索

IterativeDeepeningSearch类中包含了执行IDS的核心方法:

public static void iterativeDeepeningSearch(TreeNode root, String target, int depthLimit) {
    // 检查根节点是否为空
    if (root == null) {
        return;
    }
    // 如果深度限制足够大,说明搜索空间没有限制,直接使用深度优先搜索
    if (depthLimit < Integer.MAX_VALUE) {
        depthFirstSearch(root, target, 1, depthLimit);
    } else {
        // 否则,开始迭代加深搜索
        int currentDepth = 1; // 当前搜索的深度
        boolean found = false; // 是否找到目标
        do {
            // 执行深度限制的深度优先搜索
            found = depthFirstSearch(root, target, currentDepth, currentDepth);
            // 如果当前深度没有找到目标,增加深度限制
            currentDepth++;
        } while (!found && currentDepth < Integer.MAX_VALUE); // 直到找到目标或搜索空间耗尽
    }
}

深度限制的深度优先搜索

depthFirstSearch是一个辅助方法,用于执行带有深度限制的DFS:

private static boolean depthFirstSearch(TreeNode node, String target, int currentDepth, int depthLimit) {
    // 检查节点是否为空或当前深度是否超出深度限制
    if (node == null || currentDepth > depthLimit) {
        return false;
    }
    // 如果当前节点包含目标数据,返回true
    if (node.data.equals(target)) {
        return true;
    }
    // 否则,递归搜索左子树和右子树
    // 搜索时,当前深度加1
    return depthFirstSearch(node.left, target, currentDepth + 1, depthLimit) ||
           depthFirstSearch(node.right, target, currentDepth + 1, depthLimit);
}

主函数

在main函数中,我们创建了一个树结构,并调用了iterativeDeepeningSearch方法来开始搜索:

public static void main(String[] args) {
    // 创建树结构
    TreeNode root = new TreeNode("A");
    // ... 构建树的其他部分

    // 定义要搜索的目标
    String target = "G";

    // 开始迭代加深搜索,初始深度限制为1
    iterativeDeepeningSearch(root, target, 1);

    // 如果搜索过程中找到了目标,打印消息
    if (depthFirstSearch(root, target, 1, Integer.MAX_VALUE)) {
        System.out.println("Target found!");
    } else {
        System.out.println("Target not found.");
    }
}

在main函数的最后,我们调用了depthFirstSearch方法,这次没有深度限制,来最终确认目标是否被找到。这是因为在实际的IDS实现中,一旦确定了目标所在的最小深度,就可以无限制地搜索以找到目标。

注意

  • depthLimit参数在iterativeDeepeningSearch方法中用于控制搜索的深度。如果这个值设置为Integer.MAX_VALUE,则表示没有深度限制,搜索将退化为普通的深度优先搜索。
  • currentDepth参数在depthFirstSearch方法中用于跟踪当前的递归深度,确保搜索不会超出设定的深度限制。
  • found变量用于标记是否找到目标节点,如果找到,则终止搜索。

这个实现展示了IDS的基本思想,即通过逐渐增加深度限制来重复执行深度优先搜索,直到找到目标节点或搜索整个树。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/576896.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vivado 使用“链路 (Links)”窗口查看和更改链路设置

使用“链路 (Links) ”窗口查看和更改链路设置 创建链路后 &#xff0c; 就会将其添加到“ Links ”视图 &#xff08; 请参阅下图 &#xff09; 中 &#xff0c; 该视图是更改链路设置和查看状态的主要方法 &#xff0c; 也是最佳方法。 “ Links ”窗口中的每一行都对应 1 …

pymilvus创建多向量

pymilvus创建多向量 从 Milvus 2.4 开始&#xff0c;引入了多向量支持和混合搜索框架&#xff0c;单个collection可以支持10个向量字段。不同的向量字段可以表示不同的方面、不同的embedding模型甚至表征同一实体的不同数据模态。该功能在综合搜索场景中特别有用&#xff0c;例…

python学习笔记----python基础语法(二)

一、字面量 在 Python 中&#xff0c;字面量 是一种直接在代码中表示其自身值的数据。字面量用于创建值&#xff0c;并且可以直接被 Python 的解释器识别和处理。不同类型的数据有不同的字面量形式。下面是一些常见的字面量类型&#xff1a; 二、注释 注释&#xff1a;在程序…

[Android14] SystemUI的启动

1. 什么是System UI SystemUI是Android系统级应用&#xff0c;负责反馈系统及应用状态并与用户保持大量的交互。业务主要涉及的组成部分包括状态栏(Status Bar)&#xff0c;通知栏(Notification Panel)&#xff0c;锁屏(Keyguard)&#xff0c;控制中心(Quick Setting)&#xff…

Babylon.js和Three.js的区别

Babylon.js和Three.js都是基于WebGL的3D图形库&#xff0c;它们使得开发者能够在网页上创建和展示3D内容。尽管它们的目标相似&#xff0c;但在设计理念、功能集、性能和社区支持等方面存在一些差异。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢…

SpringCloud引入SpringBoot Admin

Spring Boot Admin可以监控和管理Spring Boot&#xff0c;能够将 Actuator 中的信息进行界面化的展示&#xff0c;也可以监控所有 Spring Boot 应用的健康状况&#xff0c;提供警报功能。 1. 创建SpringBoot工程 2. 引入相关依赖 <dependency><groupId>com.alib…

MinIO分布式文件系统介绍

1、不同存储方式的对比&#xff1a; 2、 分布式文件系统对比 3、MinIO的特点 MinIO特点 数据保护&#xff1a;Minio使用Minio Erasure Code&#xff08;纠删码&#xff09;来防止硬件故障。即便损坏一半以上的driver&#xff0c;但是仍然可以从中恢复。 高性能&#xff1a;作…

PID算法学习

PID算法介绍 在过程控制中&#xff0c;按偏差的比例&#xff08;P&#xff09;、积分&#xff08;I&#xff09;和微分&#xff08;D&#xff09;进行控制的PID控制器&#xff08;亦称PID调节器&#xff09;是应用最为广泛的一种自动控制器。它具有原理简单&#xff0c;易于实…

冯唐成事心法笔记 —— 知世

系列文章目录 冯唐成事心法笔记 —— 知己 冯唐成事心法笔记 —— 知人 冯唐成事心法笔记 —— 知世 冯唐成事心法笔记 —— 知智慧 文章目录 系列文章目录PART 3 知世 成事者的自我修养怎样做一个讨人喜欢的人第一&#xff0c;诚心第二&#xff0c;虚心 如何正确看待别人的评…

MQTTX工具获取及使用

工具获取地址&#xff1a;百度网盘 请输入提取码 新建连接 订阅主题

Redis分布式锁手动实现

Redis分布式锁手动实现 java中锁机制 在 Java 中&#xff0c;锁是用来同步并发访问共享资源的机制。它确保了在一个时间点&#xff0c;只有一个线程可以执行某个代码块或方法&#xff0c;从而防止了数据的不一致和竞态条件。Java 提供了多种锁机制&#xff0c;包括内置锁&…

全国各地级市财政收入支出明细统计数据2003-2022年

01、数据简介 全国各地级市财政统计主要是按地级市财政支出和财政收入两项统计&#xff0c;反映地区财政资金形成、分配以及使用情况的统计&#xff0c;​是由地区各地级市统计局统计公布&#xff0c;是加强财政资金管理使用的依据&#xff0c;研究国民收入分配和再分配的重要…

山东省2024年首版次测试报告具体的要求是什么?

山东省首版次测试报告的具体要求可能会根据每年的政策调整、行业变化以及申报的具体产品而有所不同。但一般而言&#xff0c;山东省首版次测试报告需要满足以下一些基本要求和标准&#xff1a; 1.完整性&#xff1a;测试报告应涵盖所有关键的测试环节&#xff0c;包括但不限于测…

张小泉签约实在智能,用实在Agent打造自动化高

在不少老杭州人的童年记忆里&#xff0c;妈妈裁剪衣服、料理食材、修剪各种物品&#xff0c;用的都是张小泉刀剪。 近日&#xff0c;实在智能与“刀剪第一股”张小泉&#xff08;股票代码&#xff1a;301055.SZ&#xff09;正式达成合作&#xff0c;实在Agent数字员工助力张小…

AM解调 FPGA(寻找复刻电赛电赛D题的)

设计平台 Quartus II10.3mif产生工具modelsimSE &#xff08;仿真用&#xff09; DDS&#xff08;直接数字式频率合成器&#xff09; 从前面的内容可知&#xff0c;我们需要产生一个载波&#xff0c;并且在仿真时&#xff0c;我们还需要一个较低频率的正弦波信号来充当我们的…

划重点:用这个技巧,抖音粉丝涨不停!

在这个信息爆炸的时代&#xff0c;如何在抖音上脱颖而出&#xff0c;吸引大量粉丝&#xff0c;成为了每一个创作者心中的痛。你是否曾经在发布作品后焦急等待评论&#xff0c;期待着每一次互动&#xff1f;如果你有这样的困扰&#xff0c;那么这篇文章将为你打开一扇新的大门&a…

【Claude 3 Opus】Claude 3 Opus 模型正式上线抢先体验

文章目录 1. Claude 3 Opus介绍2. Claude 3 Opus 支持的应用场景3. 申请Claude 3 Opus访问4. Claude 3 Opus初体验5. 『云上探索实验室』Bedrock 体验又更新啦6. 参考链接 1. Claude 3 Opus介绍 近期&#xff0c;亚马逊云宣布 Anthropic 的 Claude 3 Opus 模型已在 Amazon Bed…

大数据分析与应用实验(黑龙江大学)

实验一 Hadoop伪分布式实验环境搭建与WordCount程序 一、实验目的 1、学习搭建Hadoop伪分布式实验环境 2、在伪分布式实验环境下运行WordCount程序 二、实验内容 1、搭建Hadoop伪分布式实验环境&#xff0c;并安装Eclipse。 2、在Eclipse环境下&#xff0c;编写并执行Wor…

【JVM】从i++到JVM栈帧

【JVM】从i到JVM栈帧 本篇博客将用两个代码例子&#xff0c;简单认识一下JVM与栈帧结构以及其作用 从i与i说起 先不急着看i和i&#xff0c;我们来看看JVM虚拟机&#xff08;请看VCR.JPG&#xff09; 我们初学JAVA的时候一定都听到过JAVA“跨平台”的特性&#xff0c;也就是…

西瓜书学习——线性判别分析

文章目录 定义LDA的具体步骤1. 计算类内散布矩阵&#xff08;Within-Class Scatter Matrix&#xff09;2. 计算类间散布矩阵&#xff08;Between-Class Scatter Matrix&#xff09;3. 求解最佳投影向量4. 数据投影5. 分类 定义 线性判别分析&#xff08;Linear Discriminant A…
最新文章